Extensions
pymdownx.arithmatex

pymdownx.arithmatex

For maths lovers

The pymdownx.arithmatex extension is a Python-Markdown plugin that enables rendering of mathematical expressions written in LaTeX syntax.

Configuration

# mkdocs.yml

markdown_extensions:
  - codehilite

Note:

When pymdownx.arithmatex is enabled, the theme automatically loads KateX material to render math (css, js and fonts). Currently we ship the version v0.16.21.

Syntax

Just like latex.

Let $F$ be a primitive of $f$,
$$
\int_{a}^b f(x) ~\mathrm{d}x = F(b) - F(a).
$$

Let \(F\) be a primitive of \(f\),

\[ \int_{a}^b f(x) ~ \mathrm{d} x = F(b) - F(a). \]

You can combine with admonition for instance.

!!! note "Theorem"

    Let $X_1, X_2, \dots, X_n$ be a sequence of independent and 
    identically distributed random variables with mean $\mu$ and 
    finite variance $\sigma^2$. Define the sample mean:

    $$
    \overline{X}_n = \frac{1}{n}\sum_{i=1}^{n} X_i
    $$

    Then, as  $n \to \infty$:

    $$
    \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0,1)
    $$

    In other words, the distribution of the standardized 
    sample mean approaches the standard normal distribution:

    $$
    \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1), \quad \text{as } n \to \infty
    $$

Theorem

Let \(X_1, X_2, \dots, X_n\) be a sequence of independent and identically distributed random variables with mean \(\mu\) and finite variance \(\sigma^2\). Define the sample mean:

\[ \overline{X}_n = \frac{1}{n}\sum_{i=1}^{n} X_i \]

Then, as \(n \to \infty\):

\[ \frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow{d} \mathcal{N}(0,1) \]

In other words, the distribution of the standardized sample mean approaches the standard normal distribution:

\[ \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} \mathcal{N}(0,1), \quad \text{as } n \to \infty \]